パイプ・イン・パイル融雪工法

パイプ・イン・パイル方式

ソーラー・パイル方式
パイプ・イン・パイル（PIP）融雪工法を、より快適に使いやすくするため、新しい技術が生まれています。

☆ PIP融雪工法2つの方式

省エネ・低コスト融雪の定番、PIP融雪工法により熱効率を高め、季節間蓄熱を可能とした新システムが加わりました。

①パイプ・イン・パイル方式
②ソーラー・パイプ方式
（群杭・夏保存方式）

☆ PIP 2つのアプローチ

PIP融雪工法の構成は、地中熱を採熱したり地表面からの熱を蓄熱したりする熱源部と、熱源部からの熱を効率良く地表面に伝える放熱部に大別されます。（ソーラー・パイプ方式の場合は、夏期にも太陽熱を集めるための運転を行うので、放熱部は夏期には集熱部となり、その熱は冬期まで熱源部に蓄えられます。）計画地の条件に合わせて、熱源部・放熱部の各種技術を複合的に組み合わせる事より、より快適に使いやすく、様々な融雪・凍結防止・空調設備などに対応することが可能となりました。

(1) 熱源部 ＝ 熱交換用杭

基礎杭兼用（基礎+熱源）
蓄熱専用杭

群杭
施工費削減

コンクリート杭
鋼管杭
その他の杭（FRP等）

(2) 放熱（集熱）部 ＝ 舗装面

土工部
橋梁部

曲加工放熱管
直進式放熱管

通常埋設方式
浅埋方式

通常骨材コンクリート舗装
珪石骨材コンクリート舗装
鋼繊維補強コンクリート舗装

施工費削減
熱伝導率UP

施工中の蓄熱専用杭

施工費削減
施工期短縮

☆ PIP の運転制御

・融雪設計シミュレーションソフト ... 専用ソフトを使用し、省エネ高率やCO2削減高率を踏まえた、最適な設備・制御方法を提案します。
・各種センサー ... 積雪・降雪・路温などを検知して運転を自動制御します。
パイプ・イン・パイプ方式

基礎杭利用で低コストな地中熱融雪を実現！

地中熱で暖められた基礎杭の水、（又は不凍液）を循環させる方式を採用。
省エネ・低コストを実現した地中熱融雪です。

このシステムは、基礎杭の中空部と周囲に埋設した放熱管を閉じた管路でつながり、内部を水や不凍液で満たし、これを積雪時にポンプで循環させ基礎杭の雪を融かすものです。

すなわち、地中熱で暖められた杭内部の水や不凍液が放熱管に送られ、放熱管は周囲を暖め、積もった雪を融かすものです。そして冷たくなった水や不凍液は樹脂管を通って再び杭の底部に送られます。底部の水や不凍液は循環槽の上部へ送られますが、その間に杭を通じて周りの地中熱を吸収して暖まり、再び融雪放熱管へと送られます。システムの運転は、センサーにより自動制御でON・OFFします。

ソーラー・パイプ方式

くんぐい なつ ほそん

（群杭・夏保存方式）

もしも夏の暑さを冬までとっておけばなら･･･
そんな夢を可能にする、新技術が誕生しました！群杭が、熱の塊を作って太陽の熱を地中
に蓄えるため、省エネ・省コストはもちろんヒートアイランド対策にも利用できます。

地中熱だけを熱源とする場合は、熱交換用杭の間隔を相互干渉しない程度に離す必要があります。地中蓄熱
の場合は、逆に接近させて密に設置する（群杭方式）
ことにより熱の拡散が抑制されます。また、地中に大
きな熱の塊を作る事により、半年以上の蓄熱が可能と
なります。ソーラー・パイプ方式では、従来の地中熱
だけを熱源とする方式と比べ、杭本数を半分以下にできます。
また、熱交換用杭の設置は、建設現場などで
広く使われている基礎杭施工法を活用することにより
簡単、安価で施行する事が可能です。

図1-1 "地上温度℃"
人と地球環境に優しい、地中熱・太陽熱利用のクリーン融雪

特 長

1. 人工熱源や地下水を使うな

融雪のための人造熱源は、地中熱と太陽熱のため、人工熱源は必要ありません。また、循環方式のため自然地下水は必要です。さらにソーラーパイル方式なら、北海道でも自然熱源だけで融雪することが可能です。

2. 施工費・維持費が安価（消費電力は電熱融雪の1/10〜1/20）

熱源としては、構造物の基礎杭を利用すれば、低コストで施工できます。蓄熱仕様で施工する場合も、ソーラーパイル方式なら高い蓄熱熱効率により、既存の熱源を減らせるため省コスト。

維持費は循環ポンプ運転の電気代だけで済み、きわめて安価です。

3. 無散水だから歩きやすい、ヒートアイランド対策にも

冬期融雪時に散水しないため歩きやすい。夏期には70℃近くの路面を冷水で冷やすため、涼しく歩きやすい、高さにベットにもやさしいシステムです。

4. 藻生厚を薄く、さらに熱伝導率をUP

コンクリート舗装に鋼纖維を混入し（ファイバーコンクリート）、高強度を高めるために、放熱管の埋設深を4mにまで薄くすることができました。これにより熱伝導率が大幅にUPし、さらにコンクリートの骨材は粘土のため高い熱伝導率は従来通りです。

5. wet on wetで省コスト

高強度のファイバーコンクリートは必要量だけ使用するために、放熱管の下は普通コンクリートで施工し、打設後後はファイバーコンクリートを素早く施工するwet on wet工法を利用しています。この工法により省コストを実現しました。

6. 配管の曲げを減らして施工性UP、コストDOWN

放熱管と放熱管でコンクリートの乾燥収縮を分散させることで、長く無事に施工が進められた。配管が締結され最小（直進式）で施工性を向上させ、コスト縮減を実現しています。

7. 複合技術で様々な施設に、計画から完成まで対応

シミュレーションソフトによる適切な施設計画から、群杭・基礎杭利用等の熱源部技術、wet on wet・直進式・高熱伝導率を高め、さらに制御はコストを抑えたものから高精度にこだわったものまで、様々な施設に的確に対応できます。

PIP空調は

熱交換用杭は、年間を通じて空調設備に利用できます。特にソーラーパイル方式では、季節開発熱の効果により水熱源ヒートポンプの運転効率が大きく高まり、空気熱源ヒートポンプと比較した年間省エネルギー量は、電力消費量で20%以上の実績が確認されています。
融雪設計シミュレーションソフトは

杭の種別、径、長さ、地層、放熱系、舗装構造、気象状況などを入力し、全国842箇所の中から選んだ気象データで、每時の残雪量、杭内水温などを計算します。

・省エネ効果
エネルギー消費量（年間電力）を計算して、電気融雪と比較します。

・CO2削減効果
年間の消費電力より、電気融雪と比べた場合のCO2排出量と残雪量などを比較できます。

・残雪深のシミュレーション
残雪深4次元（3次元+時間）でシミュレーション、動画で確認できます。

・杭内の蓄熱状況
年間を通した、杭内の熱の推移を計算してグラフに表示できます。
（図1-1参照）

■施工事例

パイプ・イン・パイプ方式には、様々な実績があります。

福井市「福井県立図書館 横内道路融雪」融雪面積：1000㎡
杭：PHC打撃工法166本φ600〜450杭兼用 施工：'00〜'02年

福井市「福井県立大学職員住宅 駐車場融雪」融雪面積：400㎡
杭：PHC打撃工法48本φ400杭兼用 施工：'91〜'92年

ソーラー・パイプ方式なら、なんと北海道でも地中熱のみで融雪できます！

北海道札幌市「柳日神テクノ 駐車場融雪」融雪面積：147㎡
杭：鋼管ねじ込み36本φ139.8専用杭 施工：'05年

福井県坂戸市「清永橋 横内道路・凍結解体」融雪面積：1810㎡
杭：鋼管つばね込み36本φ800杭兼用 施工：'01〜'06年
選定方法

<table>
<thead>
<tr>
<th>目的</th>
<th>対象設備</th>
<th>熱源部（熱交換器）</th>
<th>伝熱部</th>
</tr>
</thead>
<tbody>
<tr>
<td>融雪</td>
<td>橋梁</td>
<td>RC床版</td>
<td>単杭</td>
</tr>
<tr>
<td>凍結防止</td>
<td>土工部</td>
<td>線床版</td>
<td>鋼杭</td>
</tr>
<tr>
<td></td>
<td>建物</td>
<td>車道</td>
<td>鍋杭</td>
</tr>
<tr>
<td></td>
<td></td>
<td>駐車場</td>
<td>群杭</td>
</tr>
<tr>
<td></td>
<td></td>
<td>歩道</td>
<td>その他（FRP等）</td>
</tr>
<tr>
<td></td>
<td></td>
<td>各種杭 + ヒートポンプ</td>
<td>その他（融雪パネル等）</td>
</tr>
</tbody>
</table>

技術監修

国立大学法人福井大学 工学部機械工学科
〒910-8507 福井県福井市文京3-9-1

福井県 雪対策・建設技術研究所
〒918-8108 福井県福井市春日3-303
TEL: 0776-35-2412 FAX: 0776-35-2445

パイプ・イン・パイル融雪協会
http://www.pip-kyokai.jp

〒910-8571 福井市豊島1-3-1
三谷セキサン株式会社 北陸支社内
TEL: 0776-20-3413 FAX: 0776-20-3355